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TECHNICAL NOTE

CLASSES OF SOLUTIONS IN THE PROBLEM OF
STABILITY ANALYSIS IN BARS WITH VARYING

CROSS-SECTION AND AXIAL DISTRIBUTED
LOADING

D. E. PANAYOTOUNAKOS
Department of Engineering Science. Section of Mechanics. National Technical University

of Athens. GR-157 73. Athens. Greece

(Receiccd 4 June 1994)

Abstract- We construct classes of analytical solutions for the linear ordinary differential equation
of variable coefficients governing the stability analysis of bars with varying cross-section and axial
distributed loading. The analytical solutions obtained by Li et al. [( 1995) Int. 1. Solids Structures]
for two kinds of variable stiffness and axial loading in such types of bars result as special cases.

1. INTRODUCTION

The problem of linear stability and buckling analysis of a straight prismatic bar due to its
own weight was discussed by Greenhill (1881), Jasinsky (1902), Dondorff (1907) and
Karman and Biot (1940) [see also Timoshenko and Gere (1961), p. 101]. On the other
hand, the same problem, but based on non-linear geometrical elasticity (third-order theory)
was successfully investigated and solved by Panayotounakos and Theocaris (1988).

Recently, in a paper by Li et al. (1995), the linear stability analysis of straight bars with
varying flexural stiffness and axial distributed loading was discussed. Analytical solutions of
the governing ordinary differential equation (ODE) of variable coefficients were obtained
for two cases expressing the above flexural stiffness and the axial distributed loading of the
bar; namely, the cases when both previous quantities are exponential and power functions.

In this paper a successful attempt is made to present classes of analytical solutions for
the general linear ODE of variable coefficients governing the above problem. By means of
convenient functional transformations, we succeed in constructing solutions for the case
when the function of the axial distributed load N(x) is arbitrary, while the function of the
flexural stiffness EJ(x) is expressed by way of convenient functional relations with N(x)
and vice versa. The two kinds of solutions presented by Li et al. (1995) result as special
cases of the analytical solutions obtained herein.

2. ANALYTICAL SOLCTIONS OF THE GENERAL LINEAR ODE

The general linear ODE of variable coefficients governing the bending of a straight
cantilever bar of variable cross-section and variable axial distributed loading is given by Li
el al. (1995)

where

" N'(x) , N(x) N'(x)
:H (x)- -- M (x)+ --. M(x) = Co--,

N(x) EJ(x) N(x)

N'(x) = -q(x).

(I)

(2)

In the above two equations M(x) represents the internal bending moment, N(x) is the
internal axial force. q(x) denotes the axial distributed loading, while EJ(x) denotes the
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flexural stiffness of the bar. A prime means differentiation with respect to x, while the axis
x coincides with the central axis of the bar. In eqn (I) Co is a constant determinable by the
equation of the slope of the deflected bar

, Co M'(x)
y (x) = 5v(.'() + N(x) ,

if we consider the condition

for x =\" y'C\') = 0 = Co = - M'(x) = - Q(x).

Here Q(x) denotes the shear force in the .\' cross-section. Setting

M(x) = z(x), N(x) =f(x). EJ(x) = g(x),

the linear ODE (I) takes the form

r ,f ,f'

f
' z + - z = C0 -j' ,

9 ,

(3)

(4)

(5)

where/and 9 are, in general, smooth functions of x. Furthermore, if ZI(X), Z2(X) are two
linearly independent solutions of the homogeneous ODE,

(6)

then the general integral of eqn (5) can be obtained by means of the Lagrange method in
the form

(7)

where

(8)

while ('1 and ('2 are integration constants determined by suitable boundary conditions.
Therefore, the whole problem is focused on the evaluation of the above two linearly
independent solutions of the linear homogeneous ODE (6).

The aim of the present note is to extend the paper by Li et al. (1995) by trying to
construct analytical solutions of the ODE (6) [or the ODEs (5) and (I)] in the case when
the function of the axial distributed loadf(x) is arbitrary, while the function of the flexural
stiffness is expressed by means of convenient functional relations with respect to f(x) and
vice versa. Thus, a very large class of important solutions in engineering practice can be
obtained. The results already constructed by Li et al. (1995) are special cases. Considering
that

I
g(x) = ---- ,

!(X)c( ff(X) dX)
(9)

where C is an arbitrary function of the variable (S f(x) dx), and introducing the functional
transformation
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(10)

in which a dot means differentiation with respect to the variable ¢, we succeed in trans
forming the homogeneous ODE (6) to the form

r;+G(¢)~ = O. (11 )

Consequently, the problem under consideration is referred to the construction of solutions
of the ODE (11) under certain forms of the function G(¢), when the function f(x) is
arbitrary.

Based on the previously developed equations, we investigate the following cases which
are important in engineering practice.

Case a

1
fer) = arbitrary, G(¢) = ;.¢ + /l, g(x) = -. ,

/If+ ),f If dx

where;' and /l are arbitrary constants.
In this case the ODE (11) becomes

which, by way of the functional transformation

is reduced to the equation

(12)

(13)

(14)

(15)

where prime means differentiation with respect to t.
The last ODE is a typical Bessel differential equation with the general solution [Kamke,

1971, p. 440, type (10)]

(16)

where 1\ 3 and Y\ 3 are the Bessel functions of the first and second kind, of order 1/3, while
('J and ('2 are constants of integration. Based on eqn (16) and replacing the variable t by
(A¢ + /l), we deduce the general solution of the ODE (13).

The differential equation (6), corresponding to eqn (13), for the bending moment
(z = A1) becomes

(17)

which, by way of eqns (16), (14) and (10), has the following general solution:
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z(x) = {11+ Affdxr 2 {CIJU [ - ~, (11+;, ffdXy 2]

+C2 YI 3 [ - 3
2
). (I1+ A ff dxJ2]}. (18)

In the special case

(19)

the ODE (13) has constant coefficients with the general solutions

1

CI exp (J110 +C2 exp (-J110

1](0 = CI~OS(vll1~)+c2sin(-J110
C I S+('2

for Ii> 0

for 11 < 0

for 11 =0.

(20)

The ODE (6) for the bending moment (z = M) results in the form

(21)

the general solutions of which are given by expressions (20) if, instead of (, the quantity
Sf dx is introduced.

Case b

f(x) = arbitrary, em = i·e (m #- 0),

The ODE (II) becomes

I
q(x) = -----. .

. At {ffdXr
(22)

which is of Bessel type (Kamke, 1971. p. 440) with general solution

1]m = (I 2[CIJ,.(2vvl;,~1 2)+C2 Y,(2VJ;,~li2)],

V = 1!(m+2).

(23)

(24)

The ODE corresponding to eqn (23) for the bending moment (z = M) is written in the
form

r {f }'"z" -7 z' + f dx z = 0, (25)

the general solution of which is given by means of expression (24) if, instead of ~, the
quantity Sf dx is introduced.

In the special case where m = - 2, the ODE (11) becomes of Euler type

(26)

with the general solutions (Kamke, 1971, p. 40 I)
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for -4A+ I > 0
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11(~)= CI-J~+('2-JOn( for-4A+I=0 (27)

CI-J~COS (sin 0 +C2-J~ sin (sln~) for -4A+ I < 0

s= (1-4/.+11)12/2.

Here the ODE (6) for the bending moment takes the form

(28)

and its general solutions are obtained if in eqns (27) the variable ( is replaced by the
quantity Jf dx.

Case c

{
a~'-2 -h2e('- I)

f(x) = arbitrary, G(() = 7 - - 7'

- (a- e2, +h e' +C")

g(x) = {(f )
,,-2 (f )2("-1)}

f a fdx _b 2 fdx

- {a 2
exp (2 fI dX) + h exp ( fI dX) + c2

}

(29)

a, hand C are arbitrary constants.
In both these cases the ODE (II) becomes of the Whittaker type with the general

solutions [Kamke, 1971, p. 476, types (12) and (14); p. 427]

11(0 = ((I-d 2[c l <!l(aI2bc, 1/2c; 2b~'lc)

+ C2 (2b~'lc) 1 -( 12d<!l[(aI2bc) - (1 /2c) + I, 2 - (1/2c); 2b('lc]

(30)

and

11(~) = exp(-~!2)[c,<!l(-hI2a, c, 2aexp(~»

+c2(2aexp ((»I-'<1>[( -bI2a) -c+ I, -c; 2aexp (()],

respectively.
In eqns (30) <!lea, 1'; z) represents the <1>-function given by Gradshteyn and Ryzhik

(1965, p. 1058)

a z a(a+ I) Z2 a(a+ l)(a+2) Z3
<!l(a,}'; z) = 1+- - + - + - + .. '.

I' I! ((1'+ 1) 2! )'()'+ 1)(}'+2) 3!

The corresponding general solutions for the bending moment (z = M) are obtained by
expressions (30) if, instead of (, the quantity JI dx is introduced.
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Case d
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f(x) = arbitrary, C(O = -FC(~)-t(O(F= arbitrary).

In this case, by the functional transformation

we succeed in reducing the ODE (11) to the integrable form

fi+2Fp = O.

g(x) = - f(F 2 +F)'

(31)

(32)

(33)

This differential equation can be directly integrated giving the general solution

(34)

while by means of eqns (32), (31) and (10) the general solution of the ODE (6) becomes

Z(x) = C 1 exp [J F[ Jf dX]1 dxJ

+cc exp[J F[J/dX]fdxl J exp [ -2F[Jf dX]f dX]ldX. (35)

3. SPECIAL CASES

In this section we shall try to derive the analytical solutions obtained by Li et al. (1995)
as special cases of one of the four cases examined. This will be achieved by defining the
form of the functionf(x) expressing the applied axial distributed loading on the bar.

First application
We assume that the axial distributed load is an exponential function, namely

n(x) =f(x) = a exp (-h.-d). h > O. a> O.

where I denotes the total length of the bar.
Recalling case b of the previous section and using relations (22) we derive

(-hI)''' I
EJ(x) = g(x) = -- ---:--- -- --.

i.a"'-l exp [-h(m+ I)xil]

Setting

'1= -(l/h)"'I.a''''I. /1= -h(m+I),

expression (37) for the flexural stiffness becomes

(36)

(37)

(38)
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El(x) = g(x) = y exp ( - px I),
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(39)

which is coincident with the corresponding expression defined arbitrarily by Li et al. (1995),

Then, using eqn (24), the solution for the bending moment:: = M results in

where

*I, = 21')1.(-117)1 c',

(40)

(41 )

Since. according to egn (24), we have I\'= 11I+2 (III # 0), by way of the second of egns
(38) we derive

II' = -((J!h) + L I' = h!(h-fJ)

and the final expression for the function:: becomes

* *.:(x) = e'" '/fel 1,(/. eO< cl) + C e Y,(/, e' 'I)]: C = 1-17,

which coincides with the corresponding solution of Li et aI, (1995),

Second application
We assume that the axial distributed load is a power function. namely

N(x) = (x) = Y( 1+ p.y)',

wherey and c are suitable parameters,
Recalling again case b of the previous section and using eqns (22) we derive

. [fJ(1 + c)]''' I
DCy) = q(.y) = - --- ------.-

, l.y""1 (1+/1X),+",',+11

For m < 0, expression (44) for the flexural stiffness becomes

(42)

(43)

(44)

g(x)=a(l-t-/Jx/'; 0= I 1.[/3(l+C)]"'yl 1"'1; h=-c+lml(l+c). (45)

which coincides with the corresponding expression defined arbitrarily by Li et al. (1995).

Now, using solution (24). we derive the corresponding solution for the bending moment
:: = M in the form

* *::(x) = (I +/ix)lloi: 1c ll,[/.(1 +/3x)/']+ce Y,[/.(I +/J,Y)/']); k = (c+ 1)2\'. (46)

which coincides with that constructed in the previous paper. We underline here that the
special solutions derived by Li el 01. (1995) are the same as those given in case b for
m= -2.

From the above analysis it is obvious that. assuming a specific function for the axial
force. we can evaluate through the previously developed technique four different functions
for the flexural stiffness and vice versa. From all these solutions other factors. such as
materialization of the structure or financial t~tctors. etc .. may determine the optimum
solution,
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