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Abstract— We construct classes of analytical solutions for the linear ordinary differential equation
of variable coeflicients governing the stability analysis of bars with varying cross-section and axial
distributed loading. The analytical solutions obtained by Li er al. [(1995) [nt. J. Solids Structures)
for two kinds of variable stiffness and axial loading in such types of bars result as special cases.

I. INTRODUCTION

The problem of linear stability and buckling analysis of a straight prismatic bar due to its
own weight was discussed by Greenhill (1881), Jasinsky (1902), Dondorff (1907) and
Karman and Biot (1940) [see also Timoshenko and Gere (1961), p. 101]. On the other
hand, the same problem, but based on non-linear geometrical elasticity (third-order theory)
was successfully investigated and solved by Panayotounakos and Theocaris (1988).

Recently, in a paper by Li et al. (1995), the linear stability analysis of straight bars with
varying flexural stiffness and axial distributed loading was discussed. Analytical solutions of
the governing ordinary differential equation (ODE) of variable coefficients were obtained
for two cases expressing the above flexural stiffness and the axial distributed loading of the
bar; namely, the cases when both previous quantities are exponential and power functions.

In this paper a successful attempt is made to present classes of analytical solutions for
the general linear ODE of variable coefficients governing the above problem. By means of
convenient functional transformations, we succeed in constructing solutions for the case
when the function of the axial distributed load N(x) is arbitrary, while the function of the
flexural stiffness EJ(v) is expressed by way of convenient functional relations with N(x)
and vice versa. The two kinds of solutions presented by Li er al. (1995) result as special
cases of the analytical solutions obtained herein.

2. ANALYTICAL SOLUTIONS OF THE GENERAL LINEAR ODE

The general linear ODE of variable coefficients governing the bending of a straight

cantilever bar of variable cross-section and variable axial distributed loading is given by Li
et al. (1995)

- N e My = o, YW
A‘/{ (-\) XV(‘\‘) AM (\)+ EJ(\‘) M(Y) = C() N(‘V) N (l)
where
JV'(_Y) = ‘({(.‘C). (2)

In the above two equations M(x) represents the internal bending moment, N(x) is the
internal axial force. ¢(x) denotes the axial distributed loading, while EJ(x) denotes the
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flexural stiffness of the bar. A prime means differentiation with respect to x, while the axis
x coincides with the central axis of the bar. In eqn (1) C, is a constant determinable by the
equation of the slope of the deflected bar

W = s )
if we consider the condition
for x=%,1V()=0=Cy=-M' (%)= —-0(x).
Here Q(%) denotes the shear force in the x cross-section. Setting
M(x) = z(x), N(x) =/f(x). EJX)=g(x), 4
the linear ODE (1) takes the form
:_/f o+ (—;: = Cn'?, (5)

where f'and g are, in general, smooth functions of x. Furthermore, if z,(x), z,(x) are two
linearly independent solutions of the homogeneous ODE,

ot *'[".Z'-{*IZ =0, (6)
Sy

then the general integral of eqn (5) can be obtained by means of the Lagrange method in

the form

. o/ 2 J
::(',:,+('::3—(():1JE /.dx—}—COzzJ‘BITdL @)
where

D =zz—2z,, 3

while ¢, and ¢, are integration constants determined by suitable boundary conditions.
Therefore, the whole problem is focused on the evaluation of the above two linearly
independent solutions of the linear homogeneous ODE (6).

The aim of the present note is to extend the paper by Li et al. (1995) by trying to
construct analytical solutions of the ODE (6) [or the ODEs (5) and (1)] in the case when
the function of the axial distributed load f'(x) is arbitrary, while the function of the flexural
stifiness is expressed by means of convenient functional relations with respect to f(x) and
vice versa. Thus, a very large class of important solutions in engineering practice can be
obtained. The results already constructed by Li et al. (1995) are special cases. Considering
that

|
f(x)G< f () d.\»)

where G is an arbitrary function of the variable ({ f(x)dx), and introducing the functional
transformation




Technical Note 3231

() =n(), ¢= J.f(x) dx; Z=nf. " =dqf+nf, (10)

in which a dot means differentiation with respect to the variable &, we succeed in trans-
forming the homogeneous ODE (6) to the form

ii+G(on = 0. (11)

Consequently, the problem under consideration is referred to the construction of solutions
of the ODE (11) under certain forms of the function G(¢), when the function f(x) is
arbitrary.

Based on the previously developed equations, we investigate the following cases which
are important in engineering practice.

Case a
f(x) = arbitrary, G({) = A¢+p, g(x) = *'-1_—, (12)
uf+Af ff dx
where / and g are arbitrary constants.
In this case the ODE (11) becomes
i+ A&+ mn =0, (13)
which, by way of the functional transformation
ey =p(0), 1= r{+u (14)
is reduced to the equation
P —(—1/p =0, (15)

where prime means differentiation with respect to 7.
The last ODE is a typical Bessel differential equation with the general solution [Kamke,
1971, p. 440, type (10)]

> 2 5 2 ”
pl) = /' _,:CIJI 3(‘:;;1‘3 ')-{—Q Y|,3<_ ﬁﬂ ‘)jl’ (16)

where J, ; and Y, ; are the Bessel functions of the first and second kind, of order 1/3, while
¢, and ¢, are constants of integration. Based on egn (16) and replacing the variable ¢ by
(& + ). we deduce the general solution of the ODE (13).

The differential equation (6), corresponding to eqn (13), for the bending moment

(z = M) becomes
z —7.: +H{pu+4A | fdx )z =0, (17)

which, by way of equs (16). (14) and (10), has the following general solution:
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z(x) = {l‘*‘ﬂj.f d-’f} {ClJl 3|:_ 3;(#4_/' -[f dx> :I

+eY, 1[— %(uuj‘/'dx)“}}. (18)

In the special case
i =0, (19)
the ODE (13) has constant coefficients with the general solutions
¢y €Xp (\/Né) +erexp(— \/Né) forpu >0
n(&) = { ¢, cos (&) + ¢, sin (Jué) forp <0 (20)
i é+c, forp =0.
The ODE (6) for the bending moment {z = M) results in the form
o e
S +ufz=0, (21

the general solutions of which are given by expressions (20) if, instead of ¢, the quantity

| f dx is introduced.

Case b
|
f(x) = arbitrary, G(&) =2E"(m#0), g(x) = —- (22)
4 { J f d-\}
The ODE (11) becomes
zm or %:2;-7*_/"5”;4 Zrl — 0, (23)

1’]+A5 n= 0,
which is of Bessel type (Kamke, 1971. p. 440) with general solution
ME) = e LQnJaE )+ Y 2v 2 7)),
v=1/(m+2). (24)

The ODE corresponding to eqn (23) for the bending moment (z = M) is written in the

form

the general solution of which is given by means of expression (24) if, instead of £, the

quantity { f dx is introduced.
In the special case where m = —2, the ODE (11) becomes of Euler type
(26)

S+ =0

with the general solutions (Kamke, 1971, p. 401)
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e &g for —4241>0
eJé+aen/Ené for —4A+1=0 7
cifécos(sIné)+cr/Esin(siné)  for —44+1<0

n(g)

s=([—42+1))" 2.

Here the ODE (6) for the bending moment takes the form

’ A

= 28
el "
fdx

and its general solutions are obtained if in eqns (27) the variable £ is replaced by the
quantity | f dx.

Case ¢
aé:(—.? ——b:fz(“ 1)

f(x) = arbitrary, G(¢) = { @ b +C2),

i ]

c—2 2(e=1)
g =7 {aqf dx) 'b“‘f dx) } . (29)

a, b and ¢ are arbitrary constants.
In both these cases the ODE (11) becomes of the Whittaker type with the general
solutions [Kamke, 1971, p. 476, types (12) and (14) ; p. 427]

n(¢) = &' 2 [, ®(aj2bc, 1/2¢; 2bE )
+ 2 (2bE ) T OD[(aj2bc) — (1/2¢) + 1, 2~ (1/2¢) ; 2bE¢/c]
(30)
and
(&) = exp (—¢/2)[c;P(—b/2a, ¢, 2aexp (£))
+¢:Q2aexp (§))' T O[(—b/2a) —c+ 1, —c;2aexp (9],
respectively.

In eqns (30) ®(a, y; z) represents the ®-function given by Gradshteyn and Ryzhik
(1965, p. 1058)

az ala+1)z? ala+1)(a+2)
O(a,y:2) =1+ + = ot
@A = Y v ) 2 T e e+ 3

The corresponding general solutions for the bending moment (z = M) are obtained by
expressions (30) if, instead of £, the quantity | f dx is introduced.
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Case d
. 1
f(x) = arbitrary, G(§) = — F(J)— F(&)(F = arbitrary), g(x) = ——————.
( y. G( F 1D
(1)
In this case, by the functional transformation
n(<) —p(i)exp[ F(Cf)di] (32)
we succeed in reducing the ODE (11) to the integrable form
J+2Fp=0. (33)
This differential equation can be directly integrated giving the general solution
P& =cit+o CXP[ZJFdi} dé. (34)

while by means of eqns (32), (31) and (10) the general solution of the ODE (6) becomes

z(x) = ¢, exp[ | F[ [_/‘d.\}f'd.\']
+ ¢ cxp[ [E[

v

n_/'d.\]f d.\'} [exp [ 2F[ [,f’d,\}f'd.\':lf dx.  (35)

3. SPECIAL CASES

In this section we shall try to derive the analytical solutions obtained by Li ez al. (1995)
as special cases of one of the four cases examined. This will be achieved by defining the
form of the function f'(x) expressing the applied axial distributed loading on the bar.

First application
We assume that the axial distributed load is an exponential function, namely

nx)=f(x)y=aexp(—=bx/l). b>0. a>0, (36)

where / denotes the total length of the bar.
Recalling case b of the previous section and using relations (22) we derive

(—hily” !
EJ." = X)) o= — - e . 37
(=900 =700 exp (= blm < 1)xl] G
Setting
x=—(ib)y" 2" = —bm+ 1), (38)

expression (37) for the flexural stiffness becomes
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EJ(x) = g(x) = xexp (— fpxil), (39)

which is coincident with the corresponding expression defined arbitrarily by Li ez al. (1995).

Then, using eqn (24). the solution for the bending moment = = M results in
() =e ™ 3’[c1J‘.(je""" N+, Y“(:e” P, (40)
where
S = i~ by @1

Since. according to eqn (24). we have ;v = m+2 (m # 0). by way of the second of eqns
(38) we derive

Iiv=—(Bib)y+1. v=bi(h—})
and the final expression for the function - becomes
S = e e LG e e Y. he N e =1—b, (42)
which coincides with the corresponding solution of Li er af. (1995).

Second application
We assume that the axial distributed load is a power function. namely

N = f(x) = x(14+fx). (43)

where « and ¢ are suitable parameters.
Recalling again case b of the previous section and using eqns (22) we derive

. B(L+ )] 1
EJ(x) = glx) = — [/)(g‘f] e (44)
/~1m + (l _’_/;'\_)( +mic+ 1)
For m < 0, expression (44) for the flexural stiffness becomes
gy =a(l+px)": a=12B1+c)]"2" " b= —c+|ml(l+0c). (45)

which coincides with the corresponding expression defined arbitrarily by Li et al. (1995).
Now, using solution (24). we derive the corresponding solution for the bending moment
z = M in the form

) = (140 L 0+ B T+ Vi + B3 T): k = (c+1)2v. (46)

which coincides with that constructed in the previous paper. We underline here that the
special solutions derived by Li er al. (1995) are the same as those given in case b for
m= —2

From the above analysis it is obvious that. assuming a specific function for the axial
force, we can evaluate through the previously developed technique four different functions
for the flexural stiffness and vice versa. From all these solutions other factors. such as
materialization of the structure or financial factors. etc.. may determine the optimum
solution.
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